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Let us consider the Hamilton-Jacobi equation
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Here .S is the action function and 7" is a given function of the variables 7 and ¢,
We shall attempt to find the solution of this equation in the form
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Here we have introduced the new variable ) =7/(Z) , where f(¢) is any doubly dif-
ferentiable function, Substituting (2) into (1), we obtain
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In the latter equation the coefficient of 35} /X is equal to zero provided that
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For this S, Eq, (3) yields
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The variables in this equation are separable if s
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Here Y(oxr) and M(¢) are arbitrary functions, If this condition is fulfilled, the total
integral Eq, (1) is 2 df(t)
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where () and Cg are arbitrary constants,
Specifically, separation of variables in Eq, (5) is possible if
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Here X (Xx) is an arbitrary function; /%,a and b are constants,

The solution of Eq, (1) under conditions (7) is obtained in [1] by the Liapunov-Charpy
method 2],

By virtue of the Jacobi theorem [3], the resulting total integral (1) can be used to find
the solution of the associated canonical system of differential equations, This system
yields the differential Eq, d’r oF
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Thus, the latter equation can be solved for a function 7 satisfying condition (6).
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Henri Poincard [1] noted that closed trajectories (cycles) investigated,in the whole,play
a role roughly analogous to that of singular points in the study of the behavior of trajec-
tories in the small,

However, the problem of finding the cycles is in itself quite difficult, Among the cri-
teria of existence of periodic trajectories for two-dimensional systems we must first of
all note the criteria based on a consideration of vector field rotation (the indices of the
Poincaré singular points),

A sufficient criterion for the existence of periodic trajectories on a plane based on the
so-called ring principle whereby the velocity vector on the boundary of the domain is
everywhere directed into or out of the ring was pointed out by Bendixon [2 and 3],

There exist still other methods of investigation in the whole, among them the method
of Liapunov functions [4].

The criterion of existence of periodic trajectories for conservative systems in the so-
called invertible case, which is based on a consideration of the variation of the action
integral, was set forth by Whittaker [5], Our study of cycles for conservative systems is
based on a different principle, and specifically on the study of quasi-indices as structural



